- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Brandt, M (1)
-
Bruno, JF (1)
-
Capone, HE (1)
-
Gabrielson, PW (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thermal sensitivity in ectothermic organisms is often contingent upon environmental factors. Nutrient availability in particular is believed to influence the physiological responses of primary producers to global warming and is thus relevant to consider when forecasting the structure and functioning of future marine ecosystems. This study measured the effect of nutrient enrichment on the thermal sensitivity of 4 genera of Galápagos seaweeds (Ulva,Caulerpa,Padina, andOchtodes), estimated as the thermal optimum (Topt), performance maximum (Pmax), activation energy, and deactivation energy. These parameters were quantified by modeling thermal performance curves for net photosynthesis under ambient and nutrient-enriched conditions. Our findings revealed variation inToptamong genera, ranging from 27.6° to 36.0°C. Nutrient additions enhancedToptby ~2°C for 2 (PadinaandCaulerpa) of the 4 taxa and also significantly increasedPmaxinPadina, suggesting the ability for warming-induced ocean stratification and associated effects (i.e. decreasing nutrient availability) to reduce the capacities of these populations to maintain and support new growth. No significant differences inToptorPmaxwere observed for eitherUlvaorOchtodeswith enrichment. Ambient net photosynthesis and respiration rates were also compared across genera;Pmaxrates for net photosynthesis were consistently higher than those for respiration (i.e. until just beyondTopt); however, photosyntheticToptvalues were lower. Thus, this study suggests that further warming could reduce overall net primary productivity, with potentially far-reaching implications for marine food webs.more » « lessFree, publicly-accessible full text available November 21, 2025
An official website of the United States government
